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Abstract

We outline a token model for Truebit, a retrofitting, blockchain en-
hancement which enables secure, community-based computation. The
model addresses the challenge of stable task pricing, as raised in the
Truebit whitepaper, without appealing to external oracles, exchanges,
or hierarchical nodes. The system’s sustainable economics and fair
market pricing derive from a mintable token format which leverages
existing tokens for liquidity. Finally, we introduce a governance layer
whose lifecycles culminates with permanent dissolution into utility to-
kens, thereby tending the network towards autonomous decentraliza-
tion.

1 Initializing Truebit

Bitcoin, from its outset, leveraged an egalitarian distribution method en-
abling anyone with an Internet-connected computer to obtain its native
tokens [19]. The system’s automated mining process indiscriminately, al-
beit probabilistically, distributes digital wealth in the form of bitcoins to
individuals who run a Bitcoin client on their local machines. While the
practicalities of scaling, demand, and human nature introduced some com-
plexities beyond those conceived in Bitcoin’s original specifications [18], the
system’s remarkable minimization of politics, or complex formal dependen-
cies on the actions or judgements of privileged nodes, permit the underlying
protocol to function under simple, mathematical assumptions.
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Tokens born from and regulated by smart contracts, in contrast to Bit-
coin’s Nakamoto consensus, present unique bootstrapping challenges with
respect to both adoption and distribution. Indeed, Bitcoin’s value proposi-
tion of “generate your own cash and then spend it” doesn’t translate eas-
ily into systems where intended consumers must supply such cash. We
witness an abundance of miners and stakers offering computation power
and capital in the blockchain space, however the corresponding consumers
for these services, when distinct from the service providers, remain far less
ubiquitous. Some protocols, like Livepeer’s MerkleMine [20], have dispensed
tokens through computational work at the smart contract layer, yet sustain-
able distribution through apolitical function lingers elusively on blockchain’s
horizon. In light of the relatively low demand for decentralized services, we
concentrate on an economic design which minimizes friction and politics for
consumers without sacrificing security.

Consumers generally find convenience in predictable pricing as acquisi-
tion of an asset often does not coincide with its consumption. Consider a
pilot who purchases sufficient aircraft fuel for a trip from Los Angeles to
Tokyo and takes off. Halfway through his journey, the price of fuel increases
by 20%. Consequently, a corresponding 1 — 1/(120%) fraction of the pi-
lot’s remaining store vanishes from the gas tank, inconveniently diverting
his course to Hawaii. While the physical world may prevent this particular
scenario from occurring, the volatile world of cryptocurrency consumption
provides no such guarantees. The pilot in this example requires a fixed
amount of fuel, not a stable amount of fuel relative to the US dollar (USD)
(compare with [2] and [6]). This example suggests the need for a kind of
affordable, stable token independent of USD (Section 3). Both Truebit’s
stable token and fiat currency may correlate with the price of electricity
(Section 3.2). We highlight that the Truebit protocol model assumes no
distinguished authority nodes and, as such, achieves not only a trustless
computation system but a decentralized one based on simple security as-
sumptions and hierarchy-free pricing.

Any new network which requires consumers to pay for services with a
token for which they a priori lack access faces a distribution problem. This
fundamental initialization challenge exists even for mineable smart contract-
based tokens, such as those used in Truebit [23]. Some blockchain projects
politically circumvent this utility dilemma through premining, or initial dis-
tribution to a select group of individuals or institutions, however a pri-
vate premine alone does not transform the system into a public good. Sec-
tions 3.2, 4.1, and 4.2 describe premining alternatives which leverage existing
liquid tokens for distribution. This technique reduces friction for consumers,



who use assets readily available to them, while offering a potential source of
revenue for project management and enhanced collaboration.

The governance game, as described in Section 4.2, determines in the
short run tokens for use in bootstrapping and in the long run incentives for
those holding governance tokens to convert them into utility tokens. Upon
conversion of all governance tokens, a fully decentralized, yet upgradable
system persists (Section 4.3). Teutsch and ReitwieBner predicted some use
cases for Truebit in early 2017 [23, Section 7]. Armed with a modern imag-
ination, we now bring these ideas to a practical test.

2 Protocol review

This exposition describes a deployment method for the Truebit protocol [23],
a blockchain enhancement which enables smart contracts to securely execute
larger computations than the minimal gas limit permits [16]. Task Givers
submit computational tasks, while Solvers and Verifiers ensure correct re-
sults in exchange for token rewards. Each task may have several Verifiers
but only one Solver. The protocol runs on a unanimous consensus protocol
among all Verifiers; there are no privileged or distinguished nodes. We shall
largely treat the Truebit protocol as a black box, however the interested
reader may refer to the project whitepaper [23] and code [4] for full details.
While acquaintance with these specifications may prove useful, we aim to
keep the present discussion streamlined and self-contained.

Tokens have three functions in Truebit: paying for tasks, staking to
participate, and rewarding Solvers and Verifiers (Figure 1). Just as the
identities of Task Givers, Solvers, and Verifiers may either be disjoint or
overlap, so too may the actual tasking, staking, and reward tokens. The
operating model, depicted in Figure 2, enables the possibility of disjoint
tokens by minting rewards.

Solvers and Verifiers in Truebit must stake token deposits in order to
participate in the network. This reserves financing for dispute resolution, in
case some Verifier disagrees with a Solver’s solution. Staking penalties, en-
forced in the framework of a wverification game, disincentivize intentionally
false or spammy solutions from Solvers as well as false alarms from Veri-
fiers. When n Verifiers verify a task, then total token reward decreases by a
multiplicative factor of 2"~!, an exponential dropoff which dissuades Sybil
attacks, and the protocol distributes the reward evenly among all participat-
ing Verifiers. In Section 5.2, we discuss an alternative mechanism with linear
payouts rather than exponential dropoff. The Truebit protocol as described
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Figure 1: Simplified token functions in Truebit. CPU and TRU are pri-
mary tokens (Sections 3), whereas “X” and “Y” denote indeterminate, or
“variable,” tokens.

in the whitepaper uses a probabilistic reward scheme which pays Verifiers for
discovering bugs. This forced error mechanism occasionally rewards Solvers
for providing wrong answers and ensures that Verifiers get some rewards.
The whitepaper describes a jackpot repository which cumulatively stores a
portion of fees paid from each task in order to fund reward payouts in the
case of forced errors.

The current Truebit implementation [4] can process task data from var-
ious sources, including IPFS [3]. If the raw data corresponding to the input
IPFS hash is not made publicly available [21], then Truebit effectively pro-
cesses private data via some subset of Solvers and Verifiers. A task which
makes use of such a private input is called a private task. Goddard [10] first
pointed out this innate privacy feature of interactive verification, and the
Arbitrum project later popularized it [14]. The current Truebit implementa-
tion [4] processes both public and private inputs uniformly, cost-effectively,
and faster than the authors of the original whitepaper could have imagined
[17].



3 Basic token operations

We express the components of the token model through a series of self-
contained but cumulative updates to the original Truebit whitepaper [23].
As indicated in Figure 1, the system primarily relies on TRU tokens for
staking and uses CPU for task payments. A hard-wired preference for TRU
rewards aids predictable task pricing, and the multi-token model achieves
predictable economic effects by isolating the properties and functions of each
Ssystem component.

The Truebit whitepaper describes an underpricing attack in which a
Task Giver issues a task at a negligible price so that rational miners, or
Solvers and Verifiers motivated primarily by token rewards, lack incentive
to solve it [23, Section 5.5]. The Task Giver then solves the task himself,
gets a bogus answer, and breaks the system’s security. More simply, a Task
Giver might, if left to his own devices, underprice a task simply to cut
costs. Hence the protocol cannot allow Task Givers to price tasks under the
assumption of rational miners. For similar reasons, due to potential Sybil
identities, individual Solvers and Verifiers cannot securely set task costs for
other participants.

In light of these requirements, Truebit relieves Task Givers from pricing
responsibilities by fixing the cost for one computation cycle at one CPU.
Thus Task Givers holding CPU may consume them at any time without ex-
posure to price variation, while Solvers and Verifiers absorb potential market
fluctuations through the TRU token (Section 3.2). This two token model de-
couples stability and market functions in a way reminiscent of GasToken [13]
and without the protocol or governance system determining inflationary or
deflationary rates; we assume that Task Givers holding CPU condone inde-
terminate token supply so long as it does not inhibit their ability to issue
tasks and obtain correct computational results.

As a guiding design principle, the value of tokens paid into the Truebit
protocol must not exceed the value of tokens paid out as rewards, lest Task
Givers accumulate TRU rewards for spamming the network by solving their
own tasks. Indeed, one can efficiently pass entire task rewards to oneself via
private tasks as detailed in Section 3.1. Regardless of the quantity of TRU
received as a reward, the reward received per computation step is always
equivalent to one CPU according to the pricing provided by the reward
recipient.

We expect that many Verifiers participate in the network in order to
guarantee correctness of their own tasks, however these same Solvers and
Verifiers may add security to other Task Givers by leaving their Verifier



or Solver client running between solving their own tasks. Thus participants
who help the Truebit community may effectively use the system at negligible
cost (ignoring network gas and real electricity expenses).

3.1 Pricing rewards

Rational miners wish to receive no less than the market rate for their ser-
vices. We elaborate on Truebit’s staking method in order to meet this
requirement. Each participating Solver/Verifier, V', does the following prior
to solving tasks.

1. V specifies a local price per computation step in TRU, p, to be paid
to Solvers and to Verifiers, and

2. stakes both CPU and TRU tokens in a ratio of 1 to p.

For conceptual clarity, we have denominated reward payouts with respect
to number of computation steps, however in practice the local price might
represent expected price per computation step when taking into account the
sporadic, cumulative nature of jackpot payouts.

Whenever a Solver/Verifier V' earns a reward, the protocol mints to V
the TRU reward allocation at the median price among all local prices, while
the protocol burns, or permanently destroys, the Task Giver’s corresponding
payment. Median pricing, as opposed to localized pricing, avoids a potential
tragedy of the commons wherein parties maximize their own rewards at the
detriment of the tasking conversion price discussed in the next section. The
system expects the local price to equal the “true” cost of a computation step
in TRU, but what’s to stop V from collecting unbounded rewards by choos-
ing p as large as possible? The protocol incentivizes each Solver/Verifier V'
to provide correct market pricing through Staking Monitors who can swap
tokens against V'’s stake at Vs local price p. In other words, anyone hold-
ing a CPU token can exchange it for p TRU tokens against V’s deposit,
less a fixed, universal staking conversion fee of, say, 20% to dissuade swap-
ping against reasonable pricing. In more detail, a staking swap proceeds as
follows.

(a) A Staking Monitor M targets the deposit of some Solver/Verifier V
with local price p.

(b) M submits n CPU (resp. TRU) to the Staking contract.

(¢) Assuming V had staked at least np TRU (resp. n/p CPU):



i. M obtains (1 —¢)np TRU (resp. [1 — ¢Jn/p CPU) from V’s stake,
and

ii. V retains the n CPU (resp. TRU) submitted by M.

The protocol requires a price bonding delay of, say, 24 hours between the
time that a Solver/Verifier initially commits or updates a price per computa-
tion step and the time that the Solver/Verifier can participate and receive re-
wards. This delay enables Staking Monitors to confirm the Solver/Verifier’s
local price before it applies in the system. At all times, the Solver/Verifier
must have stake in the system in order to participate, however stake may
be withdrawn at any time, including during the price bonding delay period.
This allows Solvers and Verifiers to protect their deposits against potential
price volatility.

In Section 3.2, we shall construct a more cost efficient means of convert-
ing from TRU to CPU tokens; staking swaps are only preferable in cases of
outlier local pricing. Thanks to TRU’s designation as reward token, one can
achieve the reverse exchange direction, from CPU to TRU, via the method
of private tasks.

Private tasks. In cases where only a hash of the input data appears on-
chain, some nodes may never have access to a task’s raw input. Private tasks
offer rudimentary but effective security by obscurity and arise whenever the
input to a Truebit task points to data outside the blockchain or permanent
contract storage, e.g. through reads and writes to IPFS. For example, a Task
Giver can supply an IPFS hash as input to Truebit’s on-chain filesystem
without actually uploading any public data to IPFS.

A Task Giver who submits a private task can effectively guarantee that
he will be the only Solver and Verifier by ensuring that no one else has
access to the raw input data. As no other party can correctly perform the
requested computation, the Task Giver could win any verification game [23]
that arises and therefore destroy the deposit of any opposing party. Thus,
by issuing a private task and also solving it, the Task Giver can efficiently
burn CPU and in its place receive TRU as reward.

Jackpot spiral. The astute reader may notice that minting TRU rewards
“on-the-fly,” permits periodic payment to Verifiers without requiring the
existence of a jackpot repository to accumulate the necessary funding. In
the Truebit whitepaper [23], the finite quantity of tokens stored in a jackpot
repository bounds the maximum incentive for Verifiers and hence the size



of the largest, processable, secure computation. With TRU minting, in con-
trast, the Truebit protocol can, in theory, reward Solvers and Verifiers for
performing tasks of any size. Since the construction above vanquishes the in-
centive bounding parameter, the TRU token itself now becomes a scalability
solution.

Viewed another way, the design mitigates risks by eliminating politics
of replenishing and growing the jackpot repository. Karen Teutsch pointed
out that a finite jackpot repository without active, altruistic management
is susceptible to jackpot spiral. Suppose that the Truebit protocol were to
use a finite jackpot repository instead of a mintable TRU. If the value of
TRU according to the pricing contract were to decrease for any reason, or
if the jackpot repository’s drops due to normal variance, then a previously
executable task could become out of reach for the Truebit protocol. In
all likelihood, this means that some DApp which relies on Truebit would
stop working, which causes the price of TRU to drop further, which causes
additional DApps to fail, which causes the price of TRU to drop further,
resulting in an undesirable, hyperinflationary feedback loop.

3.2 Tasking token economics

Solver /Verifiers may wish to redeem rewards by issuing tasks. While Solvers
and Verifiers receive rewards in TRU, Task Givers pay for computations with
CPU. The system therefore requires an efficient means of converting TRU
into CPU. Let us inspect the economics of this process.

The system prices tasking conversions from TRU in CPU using the me-
dian over all bonded Solver/Verifiers’ local prices (Section 3.1). In short,
Solvers, Verifiers, and Task Givers can burn TRU into a tasking conversion
contract which instantly mints back an equivalent quantity of CPU tokens in
the sense that one CPU token always pays for one computation step. More
precisely, the protocol mints a quantity of CPU equal to the number of TRU
tokens burned divided by the median local price. Note that a smart contract
can efficiently maintain this median price in contract storage.

We now turn our attention to the system’s relationship with external
tokens and fiat currency. The protocol supports tasking conversions from
tokens other than TRU as illustrated in Figure 2. A Holder in possession of
XYZ tokens, who wishes to obtain CPU

1. stakes both XYZ and TRU in the tasking conversion contract, and

2. provides an exchange rate between XYZ and TRU.



Analogous to the procedure for Staking Monitors (Section 3.1), any Tasking
Monitor can swap the Holder’s deposit from XYZ to TRU or TRU to XYZ
before the end of pricing bonding period. If no Tasking Monitor swaps the
Holder’s deposit in the allotted time, then the tasking contract proceeds to
convert the XYZ deposit into CPU at the rate in Item 2 composed with the
median price described in the previous paragraph.

The above construction assumes that the XYZ token has sufficient lig-
uidity that a Tasking Monitor can not only estimate the correct price for
XYZ but also has access to XYZ tokens with which to swap. Secondly, we
assume that the Holder has some access to a modest number of TRU to-
kens, either from friends, through a Uniswap contract [5], or via whitelisted
activities (Section 4). Lastly, the amount of TRU posted must be enough
to make conversion worthwhile to the Tasking Monitor, e.g. equal to the
Verifier TRU deposit for some standard task. The total value of the TRU
deposited, however, need not equal the value of the XYZ deposit. For exam-
ple, suppose that an XYZ Holder wants to mint 100 CPU tokens and that
the Holder’s declared exchange rate is 2 XYZ per 1 TRU. The Holder de-
posits 400 XYZ tokens but only 10 TRU tokens into the external conversion
contract. A monitoring agent may then exchange 20 XYZ for the the 10
TRU tokens, or vice-versa.

We remark that an XYZ holder may burn XYZ tokens repeatedly into
the tasking conversion, using the same TRU deposit, to obtain additional
CPU tokens. Since this operation increases the net supply of tokens in the
system, care must be taken to ensure that the supply grows in a controlled
manner. We shall explore this matter further in Section 4.1.

The value of CPU in fiat. While one CPU token always pays for one
Truebit task, the exchange rate between CPU and USD may fluctuate over
time. On one hand, a CPU price increase may incentivize Task Givers to
adjust their CPU purchases, task consumptions, and TRU reward accumu-
lations, but it also attracts rational miners and therefore maintains system
integrity. A CPU price decrease, on the other hand, requires more detailed
analysis to justify profitability for Solvers and Verifiers.

A TRU Holder has options to hodl, sell, convert to CPU, or, following
the latter case, issue a task. Consider the following pair of basic economic
strategies for an active Solver/Verifier.

Strategy 1. Convert CPU as soon as it’s earned. Use a price per computa-
tion step close the median plus 20% in order to maximize the amount
of CPU obtained during conversion without attracting the attention



of a Staking Monitor.

Strategy 2. Hodl earned TRU. Use a price per computation step close the
median minus 20% in order to drive the median price of TRU relative
to CPU as high as possible without attracting the attention of a Staking
Monitor.

Whether or not TRU inflation occurs relative to CPU depends on whether
the majority of Solver/Verifiers select Strategy 1 or Strategy 2.

Below we describe reasonable conditions under which Strategy 2 is the
long-run, dominant strategy for rational miners. In a nutshell, the set of
hodlers following Strategy 2 eventually ends up with all the tokens while
others are spending them on tasks. This decrease in market CPU supply
ultimately drives up the price of CPU relative to USD.

Proposition. Suppose that initially there exist n CPU tokens, including the
equivalent value in TRU tokens according to the median price, and

(a) at least p fraction of Solver/Verifiers follow Strategy 2,

(b) on average, no more than (the equivalent of) x < p new CPU tokens
are generated during each epoch of n tasks (as a result of either TRU
deflation or external token conversions).

Then the number of tasks until the set of Solver/Verifiers following Strategy 2

hold all of the tokens is
n

p—a

Proof. The expected time, as measured in tasks for the set of Solvers fol-
lowing Strategy 2 to acquire n tokens is n/p. During this epoch, xn/p new
CPU tokens (including TRU equivalent) are created, and it takes zn/p? time
to acquire them. By iterating this calculation, we see that the time required
to acquire all tokens converges to the geometric series

n+xn+x2n+ n ﬁ<$>k_ n/p _ n
p p P P \P L—z/p p-u

whenever 0 < x/p < 1. If x < 0, then the expected time to collect all the
tokens is bounded above by n/p. O

Due to the median pricing scheme for tasking conversions, at least half
of Solver/Verifer nodes must follow the deflationary scheme from Strategy 2

10



in order for TRU value to increase relative to CPU. Solvers and Verifiers
must each weigh pros and cons in deciding local prices. A median increase
in TRU value relative to CPU effectively increases the available CPU supply.
While an increase in TRU price grants TRU Holders greater purchase power
and attracts Task Givers via reduced USD-equivalent prices, the change also
reduces USD-equivalent rewards for Solvers and Verifiers. Thus local pricing
brings into play both short-term economic and long-term network effects.
We emphasize that the protocol’s market values for TRU and CPU tokens
neither appeal to external price oracles nor exchanges, nor do they depend
on specific details of the reward mechanism (e.g. number of Verifiers per
task).

Effect of exchange markets. We have argued that the Truebit token
system functions as intended without exposure to external markets, how-
ever in general the protocol cannot guarantee that such markets will not
materialize. We now consider potential effects of liquid exchanges and ar-
gue that they do not disrupt the construction. There are four possibilities
depending on which subsets of the two tokens, TRU and CPU, are tradeable
on public exchanges. Recall that a TRU holder may convert tokens to CPU
by using the protocol’s built-in options contract as opposed to trading TRU
on an exchange.

We have already considered the case where neither TRU nor CPU is
tradable. Now let us assume a liquid market for both TRU and CPU, and
assume that an exchange value exists for each token. Let USD(TRU) [resp.
USD(CPU)] denote the exchange market value for TRU [resp. CPU], and let
the number r be the tasking conversion rate such that » TRU’s convert to 1
CPU.

Claim. Assume a fixed tasking conversion rate r. Then USD(CPU) tends
towards r - USD(TRU).

Proof. 1f ever USD(CPU) > r - USD(TRU), then rational actors will convert
rather than trade, hence the market does not support this pricing. On the
other hand, if USD(CPU) < r - USD(TRU), then rational actors will use
exchanges rather than converting. Task Givers continue to burn CPU while

no new tokens are created, hence the CPU supply decreases, and therefore
USD(CPU) increases. The claim follows. O

The remaining two cases, where exactly one of TRU or CPU is tradable
are less interesting, however we include them for completeness. In either
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case, exchanges add a sell option, but TRU and CPU prices remain incom-
parable. In case only TRU is tradable, then CPU can only be obtained
through the task conversion contract. Then CPU’s prescribed functionality
persists, and the TRU price provides little distraction. On the other hand,
a tradable CPU might make Solvers and Verifiers more inclined to convert
from TRU into CPU, in which case they can simply modify their local prices
according to the logic described above.

4 Bootstrapping the network

The CPU/TRU lifecycle steps described in the previous subsection presumes
the existence of tokens, yet none are present at network initialization. It
remains to derive the circumstances of genesis. We describe a bootstrapping
method which conveniently minimizes friction for participation and takes
advantage of flexible token supply. Sections 4.1 and 4.2 provide mutually
compatible options for initiating and maintaining a supply of TRU and CPU.
The methods described herein result in net inflation.

4.1 Staking with external tokens

For the purposes of initial distribution, in the short run, the protocol may
permit Solvers and Verifiers to stake other tokens in place of TRU, using the
same method outlined in Section 3.1, and Task Givers to burn tokens other
than CPU as payment for issuing tasks under ad-hoc pricing. While the pro-
tocol permits withdrawal of stakes, Solvers and Verifiers would still retrieve
deposits in the same currency in which they originally staked. In case the
external tokens used already have a broad, liquid distribution, Truebit im-
mediately becomes an accessible, public system. In order to facilitate Solver
and Verifier participation and legitimate use, the system restricts private
tasks to those issued with CPU. Once a sufficient initial distribution has
been established so that Task Givers, Solvers, and Verifiers can access small
quantities of TRU, this initial process would end.

Offering staking services opens a potential source of revenue with which
to finance the development team’s operations. The team can benefit from
various business transaction structures, including fiat currency payments,
value-in-kind services, and investment. Through this short-term program,
external tokens enjoy greater demand through increased utility, visibility,
and obliteration of supply via tasking.

Since the only way to obtain TRU tokens is through Solver and Verifier
rewards, the post-whitelist staking mechanism above enables an apolitical
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distribution of tokens devoid of management decisions, centralized trust, or
passive income, in contrast to other common techniques such as exchanges,
premines, initial coin offerings, [22], or airdrops [20]. Because “an airdrop
may constitute a sale or distribution of securities” [12], the apparent lack of
investment contract in this distribution method may offer regulatory ben-
efits. Even for cases where an external token use is restricted or “locked”
for regulatory compliance reasons, whitelisting it in Truebit can potentially
increase its utility, thereby making the external token less like a security.

Following the remark made in Section 3.2 regarding external tasking
conversions, the development team chooses relevant tokens XYZ on the same
blockchain as Truebit and may bound tasking and/or staking functionality
in at least one of the following parameters: the number of XYZ tokens
useable per unit time, total time allowed for whitelisting XYZ tokens, and
total quantity of XYZ whitelisted. Figure 2 illustrates the context for these
governance interactions which, as we shall discuss in Section 4.2, need not
be controlled by a centralized entity.

4.2 The governance game

Let us now consider a tokenized version of the governance mechanism out-
lined in Section 4.1. Assume some initial distribution of governance tokens,
called DAO, with democratic voting power (e.g. [1], [7]) restricted to the
following set of items:

1. whitelisting of variable tokens for use in the tasking conversion con-
tract, and

2. assigning a maximum useable allotment of each such variable token.

As DAO tokens convert over time, the protocol roughly tends towards de-
centralization as the Truebit protocol’s political hierarchy, along with the
net TRU/CPU token supply variance, fully dissolve upon the ultimate DAO
conversion. On the other hand, the last remaining DAO tokens, which could
belong to anyone who acquired even a small holding, increasingly resemble
unique souvenirs and may be slow to disappear.

The governance token, or DAO, expressly does not manage Truebit pro-
tocol upgrades (see Section 4.3), and in particular cannot assign TRU or CPU
minting rights to any new smart contract. We enumerate the DAO token’s
crypto-idiosyncratic features which resemble the independent, concurrent
material in [9)].
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(a) Each DAO token, at the token holder’s discretion, is eligible for a one-
time conversion into either TRU or CPU.

(b) Each DAO token increases in its governance power over time because
conversion decreases the total supply of DAO tokens.

(c¢) Later conversions receive a higher percentage of TRU or CPU tokens.
More quantitatively, suppose that a DAO Holder has p fraction of the
original DAO token supply and that ¢ fraction of the DAO tokens have
thus far been converted. Without loss of generality, assume that the
Holder converts to TRU and that N TRU tokens currently remain.
Then the token holder receives

f(p,c) = (p+5¢°p) - N TRU, (1)
where “5¢?p” denotes the monotonic bonus for holding DAO long-term.

Let consider what might happen if p represented the fraction of currently
remaining DAO tokens rather than the fraction relative to the original supply
of DAO tokens. As a simple illustration, assume f(p) = pN, with N =
100 TRU, and suppose that the entirety of DAO holders decide to convert
50% of their tokens to TRU. They get 50 TRU, bringing the total TRU supply
to 150. Now the DAO holders again convert 50%. This time, they receive
50% - 150 TRU = 75 TRU. Hence, by converting 50% and then 50% again
they receive a grand total of

50 TRU 4 75 TRU = 125 TRU,

whereas if they converted 100% at first, they would only have received
100 TRU. Clearly obtaining an unbounded number of tokens from a finite
amount of DAO is undesirable. We remark that the squared term “5¢2” in
Equation 1 incentivizes long-term holding by back-loading the conversion
bonus, while the number “5,” on the other hand, is a somewhat arbitrary
constant.

Don Gossen acutely noted that one could effectively apply the governance

conversion process above without a whitelisting feature.

4.3 The upgrade game

Over time, network software may require amendments due to new fixes or
features. While governance (Section 4.2) enables some foreseeable modifica-
tions, such as additions to the staking whitelist, others may require changes
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to the underlying, immutable smart contracts. In the long run, the sys-
tem requires a versatile update mechanism which preserves network effects
and minting functionality without resorting to management decisions from a
central authority. To this end, we propose a simple framework which invites
new fixes and features without breaking legacy contract code.

1. A new version of Truebit protocol smart contracts is deployed.

2. The new contracts accept both CPU and TRU tokens but mint new
CPU’ and TRU' tokens for conversions and rewards respectively. The
latter maintain tasking and staking functionality alongside legacy to-
kens.

3. DAO tokens can convert to the new CPU’ and TRU’ using the new con-
tracts as well as to legacy tokens using the old contracts (Section 4.2).

For purposes of greater governance diversity, a DAQ’ token might exist as
well. Upgrades can also introduce new governance rules, e.g. imposing a limit
on the maximum number of simultaneous tokens available for the staking
whitelist. We remark that TRU, CPU, and DAO holders all have incentive
to follow this upgrade pattern which preserves the original features of their
tokens while enhancing functionality. In a successful upgrade, TRU (resp.
CPU) gradually phases out of circulation in favor of TRU’ (CPU’), while TRU
and CPU remain useable on both legacy and upgraded systems. When for
example “CPU" = GPU?” represents a distinct hardware application, CPU
and CPU’ might incomparably coexist with distinct pricing contracts. For
additional flexibility, one can even transfer DAO tokens, and hence network
effects, across blockchains via a two-way peg [8] or similar mechanism.

Practical example. Concurrently with the production of this paper, Harz,
Gudgeon, Gervais, and Knottenbelt published a description of a reputation-
based scheme called Balance which dynamically adjusts cryptocurrency de-
posits [11]. The authors mention that the Truebit protocol could benefit
from including this design feature. The upgrade mechanism above incen-
tivizes developers to experiment with Balance’s adaptations to Truebit’s
staking mechanism.

5 Aleatorics

We conclude with two upgrade candidates for the Truebit protocol (Sec-
tion 2) which crucially interface Verifiers with randomness and private tasks.
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5.1 Martingale strategy

Let us examine the effect of private tasks on network security. Recall that
both the Task Giver’s cost and Verifier’s reward depends on the compu-
tational complexity of the underlying task (Section 3.1, [23, Section 5.4]),
and consider a Task Giver who submits a private task which costs 1 CPU
followed by a private task which costs 2 CPU, then 4 CPU, and so on dou-
bling the cost each time. Since the task is private, the Task Giver can verify
it himself without concern for splitting rewards with other Verifiers. The
Task Giver can even provide bogus answers through a Solver Sybil without
spending real compute cycles or risk of getting caught. Eventually a forced
error occurs, at which point the Task Giver more than recoups his expenses
for this sequence by challenging the forced error with a payout proportional
to the complexity of the last task times the reciprocal of the forced error
rate.

The forced error method saves gas, or execution resources from the un-
derlying blockchain network, in comparsion to distributing rewards after
each task. Forced errors, however, must be sufficiently infrequent so as to
make execution of the martingale strategy above prohibitively expensive
because the martingale vulnerability exists whenever some rational attacker
has enough capital to sustain the rounds of doubling capital. On the other
hand, if gas is not a concern, the protocol can avoid Martingale attacks en-
tirely by setting the forced error rate equal to 1, that is, imposing a forced
error on every single task.

5.2 Random selection

In parallel to the traditional exponential dropoff payout for Verifiers dis-
cussed in Section 2, we add a linear reward payout scheme in the spirit
of [15]. In addition to facilitating predictable reward payouts, this gas-
efficient approach also improves security. This random selection, which we
outline below, is uniformly compatible with private tasks. The Truebit pro-
tocol requires that tasks pass verification for both traditional exponential
dropoff and linear random selections.

1. When a Task Giver submits a task requesting k Verifiers, priced pro-
portionally, interested Solvers and Verifiers each execute it locally.

2. The protocol then randomly selects, according to the mining nonce,
k + 1 Solver/Verifiers among those with registered deposits. Each
selected Solver/Verifier has the opportunity to commit the hash of a
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solution plus some committed random bits. The latter random bits
prevent lazy copying of others’ solutions.

3. Among the responding subset from Step 2, the protocol randomly
selects a Solver, and the remaining nodes become Verifiers.

4. Solvers and Verifiers reveal their solutions. Verification games ensue
in case of disagreement until either one Verifier wins or all Verifier
challenges have been refuted. Unselected Solvers and Verifiers who
submit solutions suffer penalties.

5. Absent any dispute, Solvers and Verifiers split the reward equally.

The protocol never penalizes selected Solver/Verifiers who cannot access the
input data. Indeed, participation is optional in Step 2. Moreover, The con-
struction achieves gas efficiency since only Solver /Verifiers selected in Step 2
who commit solutions actually interact with the blockchain. The protocol
guarantees a predictable reward due to a bounded number of selected par-
ticipants, and the only real cost for non-selected Solvers and Verifiers are
watching events in a contract and performing off-chain computations.

Dandelion, Sam Moelius, and the Arbitrum paper [14] each described
variants of the following vulnerability on Truebit’s exponential dropoff scheme.
An attacker convincingly, publicly declares to all Verifiers,

“I will challenge all tasks of the form ABC roughly 100 times
in case of a forced error. Don’t bother verifying these, as the
reward is negligible.”

The attacker’s goal is to get bogus answers onto the blockchain, and this
becomes easier when he convinces other Verifiers not to participate. Random
selection makes such an attack less effective, even under the assumption of
entirely rational miners, as the attacker’s Sybil attack has no effect on the
incentives of chosen Solver/Verifiers.
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token design.
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